Activation of MDA5 requires higher-order RNA structures generated during virus infection.

نویسندگان

  • Andreas Pichlmair
  • Oliver Schulz
  • Choon-Ping Tan
  • Jan Rehwinkel
  • Hiroki Kato
  • Osamu Takeuchi
  • Shizuo Akira
  • Michael Way
  • Giampietro Schiavo
  • Caetano Reis e Sousa
چکیده

Recognition of virus presence via RIG-I (retinoic acid inducible gene I) and/or MDA5 (melanoma differentiation-associated protein 5) initiates a signaling cascade that culminates in transcription of innate response genes such as those encoding the alpha/beta interferon (IFN-alpha/beta) cytokines. It is generally assumed that MDA5 is activated by long molecules of double-stranded RNA (dsRNA) produced by annealing of complementary RNAs generated during viral infection. Here, we used an antibody to dsRNA to show that the presence of immunoreactivity in virus-infected cells does indeed correlate with the ability of RNA extracted from these cells to activate MDA5. Furthermore, RNA from cells infected with encephalomyocarditis virus or with vaccinia virus and precipitated with the anti-dsRNA antibody can bind to MDA5 and induce MDA5-dependent IFN-alpha/beta production upon transfection into indicator cells. However, a prominent band of dsRNA apparent in cells infected with either virus does not stimulate IFN-alpha/beta production. Instead, stimulatory activity resides in higher-order structured RNA that contains single-stranded RNA and dsRNA. These results suggest that MDA5 activation requires an RNA web rather than simply long molecules of dsRNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection.

Virus recognition and response by the innate immune system are critical components of host defense against infection. Activation of cell-intrinsic immunity and optimal priming of adaptive immunity against West Nile virus (WNV), an emerging vector-borne virus, depend on recognition by RIG-I and MDA5, two cytosolic pattern recognition receptors (PRRs) of the RIG-I-like receptor (RLR) protein fami...

متن کامل

Co-ordinated Role of TLR3, RIG-I and MDA5 in the Innate Response to Rhinovirus in Bronchial Epithelium

The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8-12 h following rhinovirus infection. Bronchial epithel...

متن کامل

MDA5 Plays a Crucial Role in Enterovirus 71 RNA-Mediated IRF3 Activation

Induction of type-I interferons (IFNs), IFN-α/β, is crucial to innate immunity against RNA virus infection. Cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors, including RIG-I and melanoma differentiation-associated gene 5 (MDA5), are critical pathogen sensors for activation of type-I IFN expression in response to RNA virus infection. MDA5 is required for type-I IFN expression in...

متن کامل

Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses.

The DExD/H box RNA helicase retinoic acid-inducible gene I (RIG-I) and the melanoma differentiation-associated gene 5 (MDA5) are key intracellular receptors that recognize virus infection to produce type I IFN. A third helicase gene, Lgp2, is homologous to Rig-I and Mda5 but lacks a caspase activation and recruitment domain. We generated Lgp2-deficient mice and report that the loss of this gene...

متن کامل

Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses.

The innate immune system is a vital part of the body's defences against viral pathogens. The proteins retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) function as cytoplasmic pattern recognition receptors that are involved in the elimination of actively replicating RNA viruses. Their location and their differential responses to RNA viruses emphasises ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 83 20  شماره 

صفحات  -

تاریخ انتشار 2009